

The University of Hertfordshire's new Hutton Hub building for the Student Union and other student services has a distinctive glass façade that demanded tight tolerances on foundation differential settlement. These were to be met by a stiff raft foundation but when the site investigation discovered a vast and complex network of solution and mining features in the chalk rock across almost the entire building footprint, the client was facing the prospect of a £1 million bill for foundation piling. Could advanced geotechnical analysis save the day?

AT A GLANCE

THE CHALLENGE

- Glass façade had tight tolerances on differential settlement of the building foundation.
- Site investigation encountered vast network of solution and mining features that covered most of the building footprint.
- Solution feature infill was very soft in places and highly variable.
 Conventional settlement calculation methods ruled out a raft foundation so piled foundations were recommended.
- Should a raft foundation be feasible, the structural engineers needed spring stiffness values for this variable ground.

THE SOLUTION

- The site had already been extensively investigated in multiple phases, so the infill properties were mapped precisely in three dimensions.
- The precise infill properties were transferred to a 3D finite element analysis (FEA) model of the raft foundation and supporting ground.
- Predicted settlements were very much lower and within acceptable limits.
- Raft bending moment and spring stiffness values for different raft options were provided to the structural engineers.

THE BENEFITS

- Terrible ground conditions that threatened the viability of the project were overcome with minimal changes to the design.
- The approximate £1 million additional cost of foundation piling, as well as the associated additional time and CO₂ emissions, were avoided.
- Further efficiencies in the raft design were gained through design optimisation and soil-structure interaction outputs from the 3D FEA model.

THE CHALLENGES

footprint and with depths of up to 25m.

ground conditions.

3D FEA model showing detailed mapping of the solution feature infill

GETTING DOWN TO DETAIL

The challenging ground conditions meant that the site had already been extensively

included shear and core walls to add loads were simulated.

feasible, the 3D FEA model was used to

THE BENEFITS

An impending additional cost of around

InSAR output showing insignificant settlement of the Hutton Hub building post-construction

Satellite analysis with engineering insight